应用案例

Graid Technology + ScaleFlux

通过使用加速 RAID 和硬件压缩技术来控制尾部延迟,从而提升用户体验并更高效地满足服务水平协议(SLA)要求。

目录

1	背景介绍	
	背景介绍	3
2	理解固态硬盘(SSD)的延迟	
	使用透明压缩技术降低延迟	5
	减少尾部延迟的其他方法 使用 Graid 技术降低延迟	6 7
		,
3	评估 Graid 技术的延迟性能	
	3.84 TB 的虚拟存储设备的性 能表现	9
4	 结论	
	-ロル	10

背景介绍

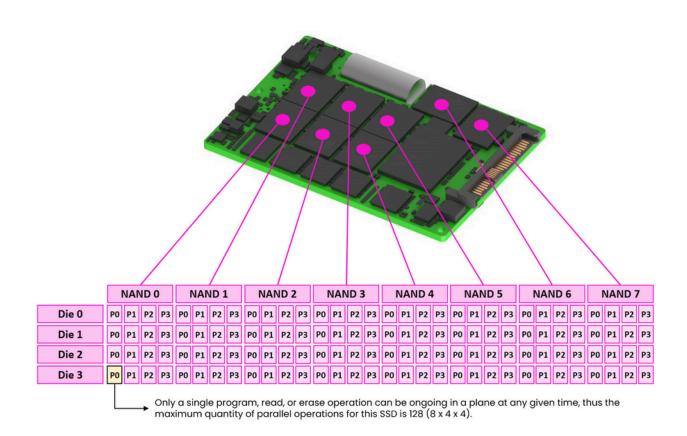
RAID 的优势众所周知。通过聚合多个磁盘资源,可以提高吞吐量,增加对一个或多个磁盘故障的保护,并实 现灵活的容量管理。RAID 的概念最早由 David A. Patterson、Garth Gibson 和 Randy H. Katz 于 1988 年在 SIGMOD 会议上发表的一篇题为《A Case for Redundant Arrays of Inexpensive Disks (RAID)》的 论文中提出。在该论文发表时,典型磁盘的吞吐量约为每秒 1 MB,延迟为两位数毫秒级。RAID 很快被证明是 提升性能和可靠性不可或缺的工具。

三十多年后的今天,单块 NVMe 磁盘的吞吐量已达数 GB/s,延迟低于毫秒级(容量更是提升了 10 万倍)。 尽管如此,RAID 的核心理念依然未变:让磁盘阵列的整体性能优于磁盘的简单叠加。

然而,现代 RAID 解决方案面临两大主要挑战:

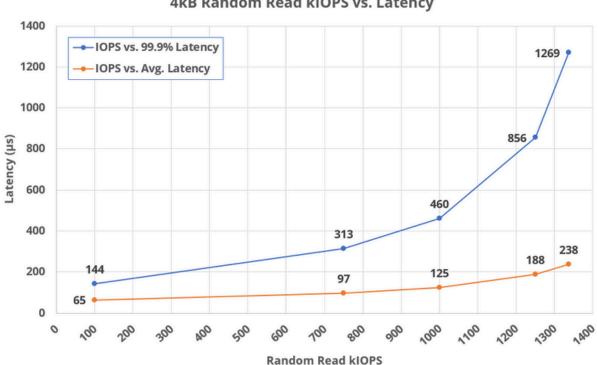
- 1.IO 性能的增长速度远快于传统计算资源的扩展速度;
- 2.在数据中心,延迟已成为关键性能指标,尤其是读尾延迟(Read Tail Latency)。

为解决 RAID 性能扩展的挑战,SupremeRAID™ SR-1000 采用了异构架构,将计算密集型的 RAID 运算卸载 到 GPU 上完成。GPU 的强大并行计算能力非常适合同时处理大量 IO 操作的 RAID 校验数据计算。这种方法 的性能优势已有充分文档支持。在本文中,我们将重点探讨延迟挑战,并研究如何通过 Graid Technology 的解决方案来管理读尾延迟。


我们将 SupremeRAID™ SR-1000 与 ScaleFlux® CSD3000 系列 NVMe SSD 结合使用。CSD3000 系列在 数据路径中采用透明压缩技术,该技术降低了写 IO 对 NAND 介质的影响,从而释放介质去处理更多的读 IO,降低延迟。这项技术与 RAID 解决方案相得益彰,特别是在主机写操作与 RAID 引发的写操作(如校验写 入、重建)结合的场景中。

2 理解固态硬盘(SSD)的延迟

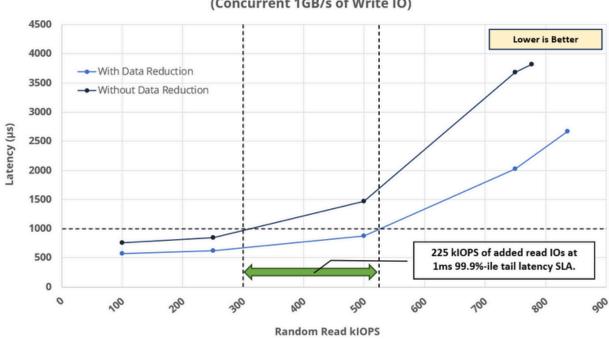
一个 SSD 由一个控制器和多个独立的 NAND 闪存芯片包组成。控制器的主要功能是将这些 NAND 闪存芯片 包转化为一个统一的存储介质。在 NVMe 术语中,这个存储介质通过一个或多个命名空间(namespace) 提供给主机,命名空间提供一个连续的逻辑块地址(LBA)范围。SSD 控制器负责将逻辑块地址动态映射到介 质中的物理地址,这一过程通常通过被称为闪存转换层(Flash Translation Layer,FTL)来完成。


每个 NAND 闪存芯片包内部包含一个或多个闪存芯片(die)。每个 NAND 闪存芯片被划分为若干平面 (plane),通常为 2 至 8 个平面。NAND 闪存的一项关键特性是,在任意时刻,一个平面只能执行一个编 程、读取或擦除操作。因此,SSD 中包含的 NAND 闪存芯片数量(或者更准确地说,平面的总数)决定了能 够实现的最大 IO 并行度。例如,考虑一个拥有 8 个 NAND 闪存芯片包的 SSD,每个包内包含 4 个 NAND 闪 存芯片,每个芯片有4个平面。

如果上述 SSD 提供了 3.84TB 的可用容量,每个平面大约容纳 30GB, 并且 LBA 空间有效地被分成了 128 个 小块(silo)。为了实现 SSD 的最大并行性,数据访问(LBA 操作)应该尽可能分布在所有平面上;然而,通 常主机无法知道某个特定的 LBA 属于哪个平面。当需要访问同一平面的操作数量增加时,延迟会随之增长。

2.1 使用透明压缩技术降低延迟

为了说明 SSD 延迟的特性,我们测量了 3.84TB CSD3000 在有无并发写操作的情况下的读延迟响应。下图展 示了随着 4KB 随机读 IOPS 增加,平均延迟和 99.9% 百分位延迟的变化。在此测试中,没有并发的主机写操 作。



4kB Random Read kIOPS vs. Latency

在图表中,可以看到两种不同的延迟增长模式:

- 线性增长区间:在 800k-900k IOPS 之间,延迟与 IOPS 增加成线性关系,延迟增长较为平稳。
- 非线性增长区间: 当 IOPS 从 800k-900k 增加到 1.33M 时,延迟以更陡峭的非线性方式增长。 这反映了 I/O 请求竞争同一平面时,由于访问竞争,尾部延迟增加。

通常,读操作与写操作是并行进行的。与读操作相比,写操作大约需要 10 倍的时间来完成。尽管许多控制器 采用了程序暂停(program suspend)等技术来缓解操作延迟的不匹配,写入和读取操作最终还是会竞争访 问相同的存储介质,这种现象被称为写读干扰(write-to-read interference)。CSD3000 中的透明压缩技 术有助于减少写读干扰,它通过去除数据冗余来减少 NAND 闪存中的写入操作。下图展示了当透明压缩技术 应用于主机数据并实现约 2:1 压缩比时的效果。

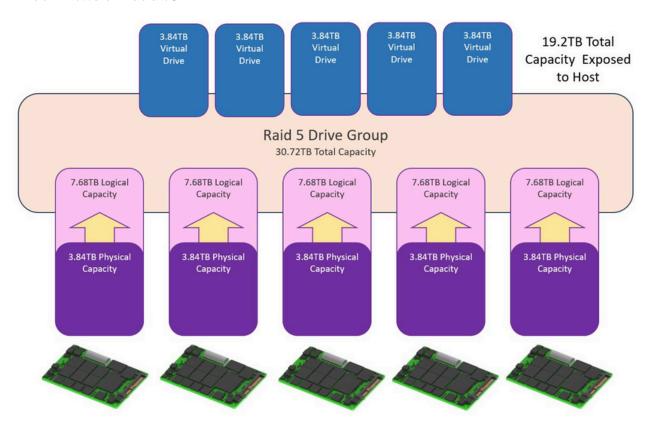
4kB Random Read kIOPS vs. 99.9%-ile Tail Latency (Concurrent 1GB/s of Write IO)

透明压缩技术的效果十分显著。通过减少写读干扰,一个 IGB/s 的写入流可以将读 IOPS 从 300k 提升到 525k,同时保持相同的尾部延迟。

2.2 减少尾部延迟的其他方法

由于 SSD 延迟本质上受到介质中 NAND 闪存芯片数量的限制,一种显而易见的解决方案是简单地增加 NAND 闪存芯片的数量。当然,这也会增加 SSD 的容量,但这种"垂直"扩展是有限制的。数据中心级控制器通常有 16 条独立的数据总线(或通道),每条通道连接多个 NAND 闪存芯片封装。每个封装最多只能连接 8 个 NAND 闪存芯片。如果想要更多芯片,可以增加封装数量,但这样会增加通道的电容负载,影响管理效率。而 且,在更小的 SSD 封装尺寸(如 E1.S)中,增加封装数量的空间可能有限。即使有更多的 NAND 闪存芯片, 性能也可能受限于通道争用、控制器瓶颈或主机接口带宽不匹配。因此,在某些情况下,为了提高 SSD 性 能,需要采取"水平"扩展,即增加更多的 SSD 来支持更大的工作负载。

在需要多个磁盘来支持工作负载的环境中,必须有一个机制来管理数据在多个磁盘间的分布。这可以通过多种 方式实现:通过软件的卷管理器(例如 LVM)、软件 RAID(例如 mdadm)、应用程序本身(例如 Aerospike 数据库)或硬件解决方案(例如传统 RAID 卡)。每种方法都有其优缺点。一些软件解决方案,如 mdadm, 受限于 CPU 性能;而传统硬件解决方案则可能引入自身的瓶颈,无论是在 RAID 控制器 SoC 中,还是在主机 PCIe 带宽与 SSD 带宽之间的匹配不当。

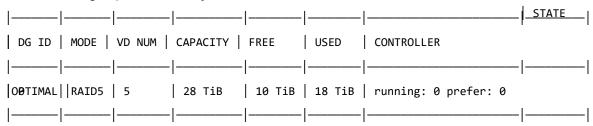


2.3 使用 Graid 技术降低延迟

SupremeRAID 采用一种创新的架构,旨在高效地将多个高性能 NVMe SSD 聚合起来。它通过硬件卸载来实 现高速度和低 CPU 利用率,同时避免限制 PCIe 连接性或在 SSD 与应用程序之间产生瓶颈。在 Graid Technology 的框架中,计算密集型的校验计算(即 RAID 校验)是通过硬件完成的,确保了 SR-1000 RAID 控制器不会在 SSD 和应用程序之间的读取数据路径中介入。这使得 SSD 的性能几乎保持原生 NVMe 水平,尤 其是在低延迟方面。虽然 SupremeRAID 提供了磁盘故障保护和容量管理(例如隐藏多个磁盘参与一个逻辑卷 的细节),但它能够在不影响延迟性能的情况下,继续保持高性能。这一能力使得 SupremeRAID 成为满足严 格延迟 SLA 要求的理想选择。SupremeRAID 通过聚合 NVMe 设备,并保持这些设备的低延迟特性,能够提 供水平性能扩展,以应对对低延迟的需求。这使其特别适合用于满足延迟敏感应用的性能扩展需求。

3 评估 Graid 技术的延迟性能

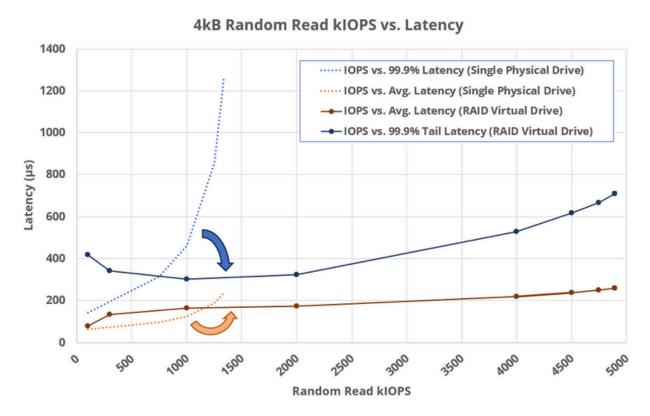
该测试使用了五个 3.84TB 容量的 CSD3000 NVMe SSD,将其集成到一个 RAID 5 池(或驱动器组)中。在 导入 SupremeRAID 驱动器组之前,这些存储设备的容量被扩展至 7.68TB,扩展逻辑容量超过物理容量是 透明压缩技术的一个特性,这种扩展是通过 NVMe 精简配置(thin provisioning)实现的,从而将写入数据 的减少转化为额外的主机存储空间。在本次测试中,我们使用扩展的容量来回收 RAID 5 中用干校验数据的 空间。具体方案如下图所示:

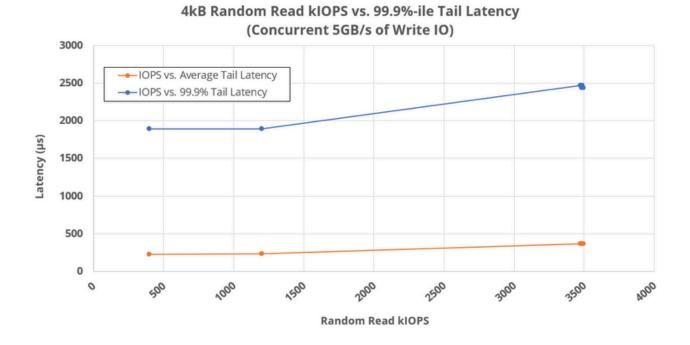


需要注意的是,系统中有 5 块 CSD3000,每个驱动器的容量为 3.84TB,因此 5 个驱动器的总物理存储容量是 5 x 3.84TB = 19.2TB。每个驱动器的容量通过透明压缩扩展到 7.68TB。因此,SupremeRAID 系统看到的总 容量是 5 x 7.68TB,即 38.4TB。由于 RAID 5 会使用一个驱动器的容量来存储校验数据,驱动器组的可用容量 减少了一个,变为 30.72TB。在 RAID 5 阵列上,5 个虚拟驱动器 被创建。每个虚拟驱动器的大小为 3.84TB,因此,总共有 19.2TB 的虚拟存储空间提供给主机。

为了补偿校验数据占用的空间,参与阵列的 CSD3000 SSD 必须达到最低 1.2:1 的数据压缩率(即写入数据减 少 20%)。如果数据可以进一步压缩,还可以创建更多的虚拟驱动器来利用额外的容量。SupremeRAID 提供 的灵活性使得存储容量管理更加灵活。通过透明压缩回收的额外存储空间,可以方便地用于创建更多虚拟驱动 器或动态扩展存储池。graidcli 工具提供了简洁的汇总信息:

\$ sudo graidctl list drive_group


✓List drive group successfully.


需要注意的是,graidcli 报告的容量单位是 TiB(1kB = 1024 字节),而非 TB(1kB = 1000 字节)。

3.1 3.84 TB 的虚拟存储设备的性能表现

单个 3.84TB 虚拟驱动器可以利用整个 RAID 池的资源,使其性能远高于单独一个驱动器。下图展示了虚拟驱 动器与单个驱动器的 4kB 随机读取性能对比:

单个驱动器的最大 IOPS 为 1.3M,而虚拟驱动器的 IOPS 能够扩展到接近 6M,同时保持低于 1 毫秒的读尾延 迟。这显示了 SupremeRAID 阵列能够在 RAID 阵列中的所有驱动器之间水平扩展性能。

当给虚拟驱动器增加 5GB/s 的高写入负载时,尽管负载非常高,随机读取 IOPS 的延迟响应依然保持平稳,直 到 3.5M IOPS 饱和为止。

4 结论

将单个 3.84TB CSD3000 驱动器与SupremeRAID 3.84TB 虚拟驱动器进行了对比。结果表明, SupremeRAID 阵列通过池化所有 SSD 的资源,使得每个 SSD 的资源可以被单个逻辑卷充分利用,从而提高 性能。

通过池化多个 NVMe SSD 并创建能充分利用底层存储并行性的逻辑卷,SupremeRAID 提供了一种关键的工 具来有效管理尾部延迟。这个工具有两个主要用途:

- 创建虚拟卷: 这些虚拟卷的性能超越任何物理卷,能够在数百万 IOPS 的性能水平下提供一致且低延 迟的响应。
- 避免浪费 SSD 性能:通过多个虚拟卷的配置,能够充分利用驱动器池提供的全部性能,从而避免 SSD 性能的浪费。这种方式特别适合突发性工作负载,因为在这种情况下,单个虚拟驱动器可以在任何容 量点上提供数百万 IOPS 和低延迟。

使用 3.84TB CSD3000 提供的扩展容量功能,将每个驱动器的逻辑容量扩展至 7.68TB。这为 SupremeRAID 驱动器池提供了一个更大的容量池,可以从中创建更多的虚拟驱动器。驱动器池的弹性特性使得在需要更多物 理容量时,可以添加更多物理驱动器;或者当 CSD3000 的透明压缩技术能够回收更多容量时,可以创建更多 的虚拟驱动器。这个特性使得存储池能够灵活地扩展和优化。

关于 Graid Technology

我们的使命是为客户提供下一代NVMe 和 NVMeoF SSD 存储基础设施,同时不牺牲他们所需的性能。 SupremeRAID™ 是一款革命性的基于 GPU 的 RAID 技术,能够为高性能工作负载的未来提供市场所需的可靠性、速度、易用性、灵活性和总拥有成本(TCO)。

www.graidtech.com

关于 ScaleFlux

ScaleFlux锐钲是大规模部署计算存储的领导者,旨在帮助其客户利用数据增长作为竞争优势,提供企业级计算存储芯片解决方案,其硬件计算加速引擎极大优化了NVMe SSD,提升了存储的能力。有效加速应用程序并优化数据中心、企业和边缘网络的基础设施资源。让客户在处理数据库、分析、物联网和5G等工作负载时获得更大的竞争优势。

sales@scaleflux.com

www.scaleflux.cn